Improving EnKF with machine learning algorithms

John Harlim
Department of Mathematics and Department of Meteorology
The Pennsylvania State University

$$
\text { June 12, } 2017
$$

Overview

A supervised learning algorithm

An unsupervised learning algorithm（diffusion maps）

Learning the localization function of EnKF

Learning a likelihood function．Application：To Correct biased observation model error in DA

A supervised learning algorithm

The basic idea of supervised learning algorithm is to train a map

$$
\mathcal{H}: X \rightarrow Y
$$

from a pair of data set $\left\{x_{i}, y_{i}\right\}_{i=1, \ldots, N}$.

A supervised learning algorithm

The basic idea of supervised learning algorithm is to train a map

$$
\mathcal{H}: X \rightarrow Y
$$

from a pair of data set $\left\{x_{i}, y_{i}\right\}_{i=1, \ldots, N}$.
Remarks:

- The objective is to use the estimated map $\hat{\mathcal{H}}$ to predict $y_{s}=\hat{\mathcal{H}}\left(x_{s}\right)$ given new data x_{s}.

A supervised learning algorithm

The basic idea of supervised learning algorithm is to train a map

$$
\mathcal{H}: X \rightarrow Y
$$

from a pair of data set $\left\{x_{i}, y_{i}\right\}_{i=1, \ldots, N}$.
Remarks:

- The objective is to use the estimated map $\hat{\mathcal{H}}$ to predict $y_{s}=\hat{\mathcal{H}}\left(x_{s}\right)$ given new data x_{s}.
- Various methods to estimate \mathcal{H} include regression, SVM, KNN, Neural Nets, etc.

A supervised learning algorithm

The basic idea of supervised learning algorithm is to train a map

$$
\mathcal{H}: X \rightarrow Y
$$

from a pair of data set $\left\{x_{i}, y_{i}\right\}_{i=1, \ldots, N}$.
Remarks:

- The objective is to use the estimated map $\hat{\mathcal{H}}$ to predict $y_{s}=\hat{\mathcal{H}}\left(x_{s}\right)$ given new data x_{s}.
- Various methods to estimate \mathcal{H} include regression, SVM, KNN, Neural Nets, etc.
- For this talk, we will focus on how to use regression in appropriate spaces to improve EnKF.

An unsupervised learning algorithm

Given a data set $\left\{x_{i}\right\}$, the main task is to learn a function $\varphi\left(x_{i}\right)$ that can describe the data.
${ }^{1}$ Coifman \& Lafon 2006, Berry \& H, 2016.

An unsupervised learning algorithm

Given a data set $\left\{x_{i}\right\}$, the main task is to learn a function $\varphi\left(x_{i}\right)$ that can describe the data.

In this talk, I will focus on a nonlinear manifold learning algorithm, the diffusion maps ${ }^{1}$: Given $\left\{x_{i}\right\} \in \mathcal{M} \subset \mathbb{R}^{n}$ with a sampling measure q, the diffusion maps algorithm is a kernel based method that produces orthonormal basis functions on the manifold, $\varphi_{k} \in L^{2}(\mathcal{M}, q)$.

An unsupervised learning algorithm

Given a data set $\left\{x_{i}\right\}$, the main task is to learn a function $\varphi\left(x_{i}\right)$ that can describe the data.

In this talk, I will focus on a nonlinear manifold learning algorithm, the diffusion maps ${ }^{1}$: Given $\left\{x_{i}\right\} \in \mathcal{M} \subset \mathbb{R}^{n}$ with a sampling measure q, the diffusion maps algorithm is a kernel based method that produces orthonormal basis functions on the manifold, $\varphi_{k} \in L^{2}(\mathcal{M}, q)$.

These basis functions are solutions of an eigenvalue problem,

$$
q^{-1} \operatorname{div}\left(q \nabla \varphi_{k}(x)\right)=\lambda_{k} \varphi_{k}(x)
$$

where the weighted Laplacian operator is approximated with an integral operator with appropriate normalization.
${ }^{1}$ Coifman \& Lafon 2006, Berry \& H, 2016.

Examples:

Example: Uniformly distributed data on a circle, we obtain the Fourier basis.

Example: Gaussian distributed data on a real line, we obtain the Hermite polynomials.

Example: Nonparametric basis functions estimated on nontrivial manifold

Remark: Essentially, one can view the DM as a method to learn generalized Fourier basis on the manifold.

Learning the localization function of EnKF

- When EnKF is performed with small ensemble size, one way to alleviate the spurious correlation is to employ a localization function.

Learning the localization function of EnKF

- When EnKF is performed with small ensemble size, one way to alleviate the spurious correlation is to employ a localization function.
- For example, in the serial EnKF, for each scalar observation, y_{i}, one "localizes" the Kalman gain,

$$
K=L_{x y_{i}} \circ X Y_{i}^{\top}\left(Y_{i} Y_{i}^{\top}+R\right)^{-1}
$$

with an empirically chosen localization function $L_{x y_{i}}$
(Gaspari-Cohn, etc), which requires some tunings.

Learning the localization function of EnKF

- When EnKF is performed with small ensemble size, one way to alleviate the spurious correlation is to employ a localization function.
- For example, in the serial EnKF, for each scalar observation, y_{i}, one "localizes" the Kalman gain,

$$
K=L_{x y_{i}} \circ X Y_{i}^{\top}\left(Y_{i} Y_{i}^{\top}+R\right)^{-1}
$$

with an empirically chosen localization function $L_{x y_{i}}$ (Gaspari-Cohn, etc), which requires some tunings.

- Let's use the idea from machine learning to train this localization function. The key idea is to find a map that takes poorly estimated correlations to accurately estimated correlations.

Learning localization map ${ }^{2}$

Given a set of large ensemble EnKF solutions, $\left\{x_{m}^{a, k}\right\}_{\substack{k=1, \ldots, L \\ m=1, \ldots, M}}$ as a training data set, where L is large enough so the correlation, $\rho_{i j}^{L} \approx \rho\left(x_{i}, y_{j}\right)$, is accurate.

Learning localization map ${ }^{2}$

Given a set of large ensemble EnKF solutions, $\left\{x_{m}^{a, k}\right\}_{\substack{k=1, \ldots, L \\ m=1, \ldots, M}}$ as a training data set, where L is large enough so the correlation, $\rho_{i j}^{L} \approx \rho\left(x_{i}, y_{j}\right)$, is accurate.

- Operationally, we wish to run EnKF with $K \ll L$ ensemble members. Then our goal is to train a map that transform the subsampled correlation $\rho_{i j}^{K}$ into the accurate correlation $\rho_{i j}^{L}$.

Learning localization map ${ }^{2}$

Given a set of large ensemble EnKF solutions, $\left\{x_{m}^{a, k}\right\}_{\substack{k=1, \ldots, L \\ m=1, \ldots, M}}$ as a training data set, where L is large enough so the correlation, $\rho_{i j}^{L} \approx \rho\left(x_{i}, y_{j}\right)$, is accurate.

- Operationally, we wish to run EnKF with $K \ll L$ ensemble members. Then our goal is to train a map that transform the subsampled correlation $\rho_{i j}^{K}$ into the accurate correlation $\rho_{i j}^{L}$.
- Basically, we consider the following optimization problem:

$$
\begin{aligned}
& \min _{L_{x_{i} y_{j}}} \int_{[-1,1]} \int_{[-1,1]}\left(L_{x_{i} y_{j}} \rho_{i j}^{K}-\rho_{i j}^{L}\right)^{2} p\left(\rho_{i j}^{K} \mid \rho_{i j}^{L}\right) p\left(\rho_{i j}^{L}\right) d \rho_{i j}^{K} d \rho_{i j}^{L} \\
& \stackrel{M \mathcal{C}}{\approx} \min _{L_{x_{i} y_{j}}} \frac{1}{M S} \sum_{m, s=1}^{M, S}\left(L_{x_{i} y_{j}} \rho_{i j, m, s}^{K}-\rho_{i j, m}^{L}\right)^{2}
\end{aligned}
$$

where $\rho_{i j, m}^{L} \sim p\left(\rho_{i j}^{L}\right)$ and $\rho_{i j, m, s}^{K} \sim p\left(\rho_{i j}^{K} \mid \rho_{i j}^{L}\right)$ is an estimated correlation using only K out of L training data.
${ }^{2}$ De La Chevrotière \& H, 2017.

Example: On Monsoon-Hadley multicloud model ${ }^{3}$

It's a Galerkin projection of zonally symmetric β-plane primitive eqns into the barotropic, and first two baroclinic modes, stochastically driven by a three-cloud model paradigm. Consider observation model $h(x)$ that is similar to a RTM.

[^0]
Example of trained localization map

Channel 3 and θ_{1}

Channel 6 and $\theta_{e b}$

DA results

| - | K1000 | －0． | Ld $\quad-\quad$ obs noise | - |
| :--- | :--- | :--- | :--- | :--- | :--- |
| climato std | | | | |

Correcting biased observation model error ${ }^{4}$

All the Kalman based DA method assumes unbiased observation model error, e.g.,

$$
y_{i}=h\left(x_{i}\right)+\eta_{i}, \quad \eta_{i} \sim \mathcal{N}(0, R)
$$

Suppose the operator h is un known. Instead, we are only given \tilde{h}, then

$$
y_{i}=\tilde{h}\left(x_{i}\right)+b_{i}
$$

where we introduce a biased model error, $b_{i}=h\left(x_{i}\right)-\tilde{h}\left(x_{i}\right)+\eta_{i}$.

Example: Basic radiative transfer model

Consider solutions of the stochastic cloud model ${ }^{5}$, $\left\{T(z), \theta_{e b}, q, f_{d}, f_{s}, f_{c}\right\}$. Based on this solutions, define a basic radiative transfer model as follows,

$$
h_{\nu}(x)=\theta_{e b} T_{\nu}(0)+\int_{0}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z
$$

where T_{ν} is the transmission between heights z to ∞ that is defined to depend on q.
The weighting function, $\frac{\partial T_{\nu}}{\partial z}$ are defined as follows:

[^1]
Example: Basic radiative transfer model

Suppose the deep and stratiform cloud top height is $z_{d}=12 \mathrm{~km}$, while the cumulus cloud top height is $z_{c}=3 \mathrm{~km}$. Define $f=\left\{f_{d}, f_{c}, f_{s}\right\}$ and $x=\left\{T(z), \theta_{e b}, q\right\}$. Then the cloudy RTM is given by,

$$
\begin{aligned}
h_{\nu}(x, f)= & \left(1-f_{d}-f_{s}\right)\left[\theta_{e b} T_{\nu}(0)+\int_{0}^{z_{d}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right] \\
& +\left(f_{d}+f_{s}\right) T\left(z_{t}\right) T_{\nu}\left(z_{d}\right)+\int_{z_{d}}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z
\end{aligned}
$$

Example: Basic radiative transfer model

Suppose the deep and stratiform cloud top height is $z_{d}=12 \mathrm{~km}$, while the cumulus cloud top height is $z_{c}=3 \mathrm{~km}$. Define $f=\left\{f_{d}, f_{c}, f_{s}\right\}$ and $x=\left\{T(z), \theta_{e b}, q\right\}$. Then the cloudy RTM is given by,

$$
\begin{aligned}
h_{\nu}(x, f)= & \left(1-f_{d}-f_{s}\right)\left[\theta_{e b} T_{\nu}(0)+\int_{0}^{z_{d}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right] \\
& +\left(f_{d}+f_{s}\right) T\left(z_{t}\right) T_{\nu}\left(z_{d}\right)+\int_{z_{d}}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z \\
= & \left(1-f_{d}-f_{s}\right)\left[\left(1-f_{c}\right)\left(\theta_{e b} T_{\nu}(0)+\int_{0}^{z_{c}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right)\right. \\
& \left.+f_{c} T\left(z_{c}\right) T_{\nu}\left(z_{c}\right)+\int_{z_{c}}^{z_{d}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right] \\
& +\left(f_{d}+f_{s}\right) T\left(z_{d}\right) T_{\nu}\left(z_{t}\right)+\int_{z_{d}}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z
\end{aligned}
$$

Example: Basic radiative transfer model

Suppose the deep and stratiform cloud top height is $z_{d}=12 \mathrm{~km}$, while the cumulus cloud top height is $z_{c}=3 \mathrm{~km}$. Define $f=\left\{f_{d}, f_{c}, f_{s}\right\}$ and $x=\left\{T(z), \theta_{e b}, q\right\}$. Then the cloudy RTM is given by,

$$
\begin{aligned}
h_{\nu}(x, f)= & \left(1-f_{d}-f_{s}\right)\left[\theta_{e b} T_{\nu}(0)+\int_{0}^{z_{d}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right] \\
& +\left(f_{d}+f_{s}\right) T\left(z_{t}\right) T_{\nu}\left(z_{d}\right)+\int_{z_{d}}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z \\
= & \left(1-f_{d}-f_{s}\right)\left[\left(1-f_{c}\right)\left(\theta_{e b} T_{\nu}(0)+\int_{0}^{z_{c}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right)\right. \\
& \left.+f_{c} T\left(z_{c}\right) T_{\nu}\left(z_{c}\right)+\int_{z_{c}}^{z_{d}} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z\right] \\
& +\left(f_{d}+f_{s}\right) T\left(z_{d}\right) T_{\nu}\left(z_{t}\right)+\int_{z_{d}}^{\infty} T(z) \frac{\partial T_{\nu}}{\partial z}(z) d z
\end{aligned}
$$

One can check that $h_{\nu}(x, 0)$ corresponds to cloud-free RTM.

Systematic model error in data assimilation

Suppose the observation is generated with

$$
y_{\nu}=h_{\nu}(x, f)+\eta, \quad \eta \sim \mathcal{N}(0, R)
$$

The difficulty in estimating the cloud fractions, cloud top heights and (in reality we don't know precisely how many clouds under a column) induces model error.

Systematic model error in data assimilation

Suppose the observation is generated with

$$
y_{\nu}=h_{\nu}(x, f)+\eta, \quad \eta \sim \mathcal{N}(0, R)
$$

The difficulty in estimating the cloud fractions, cloud top heights and (in reality we don't know precisely how many clouds under a column) induces model error.
In an extreme case, we consider filtering with a cloud-free RTM:

$$
y_{\nu}=h_{\nu}(x, 0)+b_{\nu}
$$

where $b_{\nu}=h_{\nu}(x, f)-h_{\nu}(x, 0)+\eta$ is model error with bias.

Observations $\left(y_{\nu}\right)$ v Model error $\left(b_{\nu}\right)$

State estimation of the model error

We propose a secondary filter to estimate the statistics for b_{i} as follows:

A machine learning technique, kernel embedding of conditional distribution ${ }^{6}$, is employed to train a nonparametric likelihood function.
${ }^{6}$ Song, Fukumizu, Gretton, 2013.

Secondary Bayesian filter

$$
p\left(b \mid y_{i}\right) \propto p(b) p\left(y_{i} \mid b\right)
$$

Filter estimates (with adaptive tuning of R and Q).

Example: Lorenz-96

Biased occurs random in space and times.

Nonparametric likelihood function

We will use the kernel embedding of conditional distribution．${ }^{7}$
Recall：Let X be a r．v on \mathcal{M} and distribution $P(X)$ ．Given a kernel $K: \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$ ，the Moore－Aronszajn theorem states that there exists a Reproducing Kernel Hilbert Space（RKHS）
$L^{2}(\mathcal{M}, q)$ ．This means that that $f(x)=\langle f, K(x, \cdot)\rangle_{q}$ ．

Nonparametric likelihood function

The kernel embedding of conditional distribution $P(Y \mid B)$ is defined as,

$$
\mu_{Y \mid b}=\mathbb{E}_{Y \mid b}[\tilde{K}(Y, \cdot)]=\int_{\mathcal{N}} \tilde{K}(y, \cdot) d P(y \mid b) .
$$

Given $g \in L^{2}(\mathcal{N}, \tilde{q})$,

$$
\begin{aligned}
\mathbb{E}_{Y \mid b}[g(Y)] & =\int_{\mathcal{N}} g(y) d P(y \mid b)=\int_{\mathcal{N}}\langle g, \tilde{K}(y, \cdot)\rangle_{\tilde{q}} d P(y \mid b) \\
& =\left\langle g, \int_{\mathcal{N}} \tilde{K}(y, \cdot) d P(y \mid b)\right\rangle_{\tilde{q}}=\left\langle g, \mu_{Y \mid b}\right\rangle_{\tilde{q}} .
\end{aligned}
$$

One can verify that

$$
\mu_{Y \mid b}=q \mathcal{C}_{Y B} \mathcal{C}_{B B}^{-1} K(b, \cdot),
$$

where

$$
\mathcal{C}_{B Y}=\int_{\mathcal{M} \times \mathcal{N}} K(b, \cdot) \otimes \tilde{K}(y, \cdot) d P(b, y)
$$

is the kernel embedding of $P(B, Y)$ on appropriate Hilbert spaces.

Nonparametric likelihood function $p(y \mid b)$

Given $\left\{b_{i}\right\}_{i=1}^{N}$ and $\left\{y_{i}\right\}_{i=1}^{N}$ Apply diffusion maps to learn the data-driven orthonormal basis functions $\varphi_{j}(b) \in L^{2}(\mathcal{M}, q)$ and $\tilde{\varphi}_{k}(y) \in L^{2}(\mathcal{M}, \tilde{q})$. Let

$$
p(y \mid b)=\sum_{k} \mu_{Y \mid b, k} \tilde{\varphi}_{k}(y) \tilde{q}(y)
$$

where

$$
\begin{aligned}
\mu_{Y \mid b, k} & =\left\langle p(\cdot \mid b), \tilde{\varphi}_{k}\right\rangle=\mathbb{E}_{Y \mid b}\left[\tilde{\varphi}_{k}\right]=\left\langle\mu_{Y \mid b}, \tilde{\varphi}_{k}\right\rangle_{\tilde{q}} \\
& =\left\langle q \mathcal{C}_{Y B} \mathcal{C}_{B B}^{-1} K(b, \cdot), \tilde{\varphi}_{k}\right\rangle_{\tilde{q}} \\
& =\cdots \\
& =\sum_{j} \varphi_{j}(x)\left[C_{Y B} C_{B B}^{-1}\right]_{k j}
\end{aligned}
$$

where

$$
\begin{aligned}
{\left[C_{Y B}\right]_{j k} } & =\left\langle\mathcal{C}_{Y B}, \tilde{\varphi}_{j} \otimes \varphi_{k}\right\rangle_{\tilde{q} \otimes q} \approx \frac{1}{N} \sum_{i=1}^{N} \tilde{\varphi}_{j}\left(y_{i}\right) \varphi_{k}\left(b_{i}\right), \\
{\left[C_{B B}\right]_{j k} } & =\left\langle\mathcal{C}_{B B}, \varphi_{j} \otimes \varphi_{k}\right\rangle_{q} \approx \frac{1}{N} \sum_{i=1}^{N} \varphi_{j}\left(b_{i}\right) \varphi_{k}\left(b_{i}\right)
\end{aligned}
$$

References:

1. M. De La Chevrotière \& H, "A data-driven method for improving the correlation estimation in serial ensemble Kalman filters.", Mon. Wea. Rev. 145(3), 985-1001, 2017.
2. M. De La Chevrotière \& H, "Localization mappings for filtering a monsoon-Hadley multicloud model" (in progress).
3. T. Berry \& H, "Correcting biased observation model error in data assimilation", Mon. Wea. Rev. (in press).
4. T. Berry \& H, "Variable bandwidth diffusion kernels", Appl. Comput. Harmon. Anal. 40, 68-96, 2016.
5. H, "An introduction to data-driven methods for stochastic modeling of dynamical systems", Springer (to appear).

[^0]: ${ }^{3} \mathrm{M}$. De La Chevrotière and B. Khouider 2016.

[^1]: ${ }^{5}$ Khouider, Biello, Majda 2010

