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A supervised learning algorithm

The basic idea of supervised learning algorithm is to train a map

H : X → Y ,

from a pair of data set {xi , yi}i=1,...,N .

Remarks:

I The objective is to use the estimated map Ĥ to predict
ys = Ĥ(xs) given new data xs .

I Various methods to estimate H include regression, SVM,
KNN, Neural Nets, etc.

I For this talk, we will focus on how to use regression in
appropriate spaces to improve EnKF.
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An unsupervised learning algorithm

Given a data set {xi}, the main task is to learn a function ϕ(xi )
that can describe the data.

In this talk, I will focus on a nonlinear manifold learning algorithm,
the diffusion maps1: Given {xi} ∈ M ⊂ Rn with a sampling
measure q, the diffusion maps algorithm is a kernel based method
that produces orthonormal basis functions on the manifold,
ϕk ∈ L2(M, q).

These basis functions are solutions of an eigenvalue problem,

q−1div
(
q∇ϕk(x)

)
= λkϕk(x),

where the weighted Laplacian operator is approximated with an
integral operator with appropriate normalization.

1Coifman & Lafon 2006, Berry & H, 2016.
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Examples:

Example: Uniformly distributed data on a circle, we obtain the
Fourier basis.
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Example: Gaussian distributed data on a real line, we obtain the
Hermite polynomials.
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Example: Nonparametric basis functions estimated on nontrivial
manifold

−10
0

10
−20

−10
0

10
20

5

10

15

20

25

30

35

40

45

−10
0

10
−20

−10
0

10
20

5

10

15

20

25

30

35

40

45

−10
0

10
−20

−10
0

10
20

5

10

15

20

25

30

35

40

45

−10
0

10
−20

−10
0

10
20

5

10

15

20

25

30

35

40

45

Remark: Essentially, one can view the DM as a method to learn
generalized Fourier basis on the manifold.



Learning the localization function of EnKF

I When EnKF is performed with small ensemble size, one way
to alleviate the spurious correlation is to employ a localization
function.

I For example, in the serial EnKF, for each scalar observation,
yi , one “localizes” the Kalman gain,

K = Lxyi ◦ XY
>
i (YiY

>
i + R)−1,

with an empirically chosen localization function Lxyi
(Gaspari-Cohn, etc), which requires some tunings.

I Let’s use the idea from machine learning to train this
localization function. The key idea is to find a map that takes
poorly estimated correlations to accurately estimated
correlations.
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Learning localization map2

Given a set of large ensemble EnKF solutions, {xa,km } k=1,...,L

m=1,...,M
as a

training data set, where L is large enough so the correlation,
ρLij ≈ ρ(xi , yj), is accurate.

I Operationally, we wish to run EnKF with K � L ensemble
members. Then our goal is to train a map that transform the
subsampled correlation ρKij into the accurate correlation ρLij .

I Basically, we consider the following optimization problem:

min
Lxi yj

∫
[−1,1]

∫
[−1,1]

(
Lxiyjρ

K
ij − ρLij

)2
p(ρKij |ρLij)p(ρLij) dρ

K
ij dρ

L
ij

MC
≈ min

Lxi yj

1

MS

M,S∑
m,s=1

(Lxiyjρ
K
ij ,m,s − ρLij ,m)2,

where ρLij ,m ∼ p(ρLij) and ρKij ,m,s ∼ p(ρKij |ρLij) is an estimated
correlation using only K out of L training data.

2De La Chevrotière & H, 2017.
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Example: On Monsoon-Hadley multicloud model3

It’s a Galerkin projection of zonally symmetric β-plane primitive
eqns into the barotropic, and first two baroclinic modes,
stochastically driven by a three-cloud model paradigm. Consider
observation model h(x) that is similar to a RTM.

3M. De La Chevrotière and B. Khouider 2016.



Example of trained localization map

Channel 3 and θ1

Channel 6 and θeb



DA results



Correcting biased observation model error4

All the Kalman based DA method assumes unbiased observation
model error, e.g.,

yi = h(xi ) + ηi , ηi ∼ N (0,R).

Suppose the operator h is un known. Instead, we are only given h̃,
then

yi = h̃(xi ) + bi

where we introduce a biased model error, bi = h(xi )− h̃(xi ) + ηi .

4Berry & H, 2017.



Example: Basic radiative transfer model

Consider solutions of the stochastic cloud model5, {T (z), θeb, q, fd , fs , fc}.
Based on this solutions, define a basic radiative transfer model as follows,

hν(x) = θebTν(0) +

∫ ∞
0

T (z)
∂Tν
∂z

(z) dz ,

where Tν is the transmission between heights z to ∞ that is defined to depend
on q.
The weighting function, ∂Tν

∂z
are defined as follows:
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Example: Basic radiative transfer model

Suppose the deep and stratiform cloud top height is zd = 12km, while the
cumulus cloud top height is zc = 3km. Define f = {fd , fc , fs} and
x = {T (z), θeb, q}. Then the cloudy RTM is given by,

hν(x , f ) = (1− fd − fs)
[
θebTν(0) +

∫ zd

0

T (z)
∂Tν
∂z

(z) dz
]

+(fd + fs)T (zt)Tν(zd) +

∫ ∞
zd

T (z)
∂Tν
∂z

(z) dz

= (1− fd − fs)
[
(1− fc)

(
θebTν(0) +

∫ zc

0

T (z)
∂Tν
∂z

(z) dz
)

+fcT (zc)Tν(zc) +

∫ zd

zc

T (z)
∂Tν
∂z

(z) dz
]

+(fd + fs)T (zd)Tν(zt) +

∫ ∞
zd

T (z)
∂Tν
∂z

(z) dz

One can check that hν(x , 0) corresponds to cloud-free RTM.
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Systematic model error in data assimilation

Suppose the observation is generated with

yν = hν(x , f ) + η, η ∼ N (0,R)

The difficulty in estimating the cloud fractions, cloud top heights
and (in reality we don’t know precisely how many clouds under a
column) induces model error.

In an extreme case, we consider filtering with a cloud-free RTM:

yν = hν(x , 0) + bν

where bν = hν(x , f )− hν(x , 0) + η is model error with bias.
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Observations (yν) v Model error (bν)



State estimation of the model error

We propose a secondary filter to estimate the statistics for bi as follows:

Prior
Primary Filter−−−−−−−−−−−−−−→ Posterior

p(xi ) p(xi | yi )y x
Error Prior

Secondary Filter−−−−−−−−−−−−−−→Error Posterior
p(b) p(b | yi )x x

Observation
RKHS+Training Data−−−−−−−−−−−−−−−→ Likelihood

yi p(yi | b)

A machine learning technique, kernel embedding of conditional
distribution6, is employed to train a nonparametric likelihood function.

6Song, Fukumizu, Gretton, 2013.



Secondary Bayesian filter

p(b|yi ) ∝ p(b)p(yi |b)
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Filter estimates (with adaptive tuning of R and Q).
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Example: Lorenz-96

Biased occurs random in space and times.

20

40T
ru

e 
S

ta
te

10
20O

bs

-10

-5

0

5

10

15

10 20 30 40 50
Time

20

40

R
K

H
S

20

40

E
nK

F



Nonparametric likelihood function

We will use the kernel embedding of conditional distribution.7

Recall: Let X be a r.v on M and distribution P(X ). Given a
kernel K :M×M→ R, the Moore-Aronszajn theorem states that
there exists a Reproducing Kernel Hilbert Space (RKHS)
L2(M, q). This means that that f (x) = 〈f ,K (x , ·)〉q.

7Song, Fukumizu, Gretton, 2013.



Nonparametric likelihood function

The kernel embedding of conditional distribution P(Y |B) is defined as,

µY |b = EY |b[K̃ (Y , ·)] =

∫
N
K̃ (y , ·)dP(y |b).

Given g ∈ L2(N , q̃),

EY |b[g(Y )] =

∫
N
g(y)dP(y |b) =

∫
N
〈g , K̃ (y , ·)〉q̃dP(y |b)

=
〈
g ,

∫
N
K̃ (y , ·)dP(y |b)

〉
q̃

= 〈g , µY |b〉q̃.

One can verify that

µY |b = qCYBC−1BBK (b, ·),

where

CBY =

∫
M×N

K (b, ·)⊗ K̃ (y , ·) dP(b, y)

is the kernel embedding of P(B,Y ) on appropriate Hilbert spaces.



Nonparametric likelihood function p(y |b)

Given {bi}Ni=1 and {yi}Ni=1 Apply diffusion maps to learn the data-driven
orthonormal basis functions ϕj(b) ∈ L2(M, q) and ϕ̃k(y) ∈ L2(M, q̃). Let

p(y |b) =
∑
k

µY |b,k ϕ̃k(y)q̃(y)

where

µY |b,k = 〈p(·|b), ϕ̃k〉 = EY |b[ϕ̃k ] = 〈µY |b, ϕ̃k〉q̃
= 〈qCYBC−1

BBK(b, ·), ϕ̃k〉q̃
= . . .

=
∑
j

ϕj(x)[CYBC
−1
BB ]kj

where

[CYB ]jk = 〈CYB , ϕ̃j ⊗ ϕk〉q̃⊗q ≈
1

N

N∑
i=1

ϕ̃j(yi )ϕk(bi ),

[CBB ]jk = 〈CBB , ϕj ⊗ ϕk〉q ≈
1

N

N∑
i=1

ϕj(bi )ϕk(bi ),
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